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ABSTRACT
We present an X-ray spectro-polarimetric analysis of the bright Seyfert galaxy NGC 4151. The source has been observed with the
Imaging X-ray Polarimetry Explorer (IXPE) for 700 ks, complemented with simultaneous XMM-Newton (50 ks) and NuSTAR
(100 ks) pointings. A polarization degree Π = 4.9 ± 1.1% and angle Ψ = 86◦ ± 7◦ east of north (68% confidence level) are
measured in the 2–8 keV energy range. The spectro-polarimetric analysis shows that the polarization could be entirely due to
reflection. Given the low reflection flux in the IXPE band, this requires however a reflection with a very large (> 38%) polarization
degree. Assuming more reasonable values, a polarization degree of the hot corona ranging from ∼ 4 to ∼ 8% is found. The
observed polarization degree excludes a ‘spherical’ lamppost geometry for the corona, suggesting instead a slab-like geometry,
possibly a wedge, as determined via Monte Carlo simulations. This is further confirmed by the X-ray polarization angle, which
coincides with the direction of the extended radio emission in this source, supposed to match the disc axis. NGC 4151 is the first
AGN with an X-ray polarization measure for the corona, illustrating the capabilities of X-ray polarimetry and IXPE in unveiling
its geometry.
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1 INTRODUCTION

The common paradigm forActiveGalacticNuclei (AGN) (Antonucci
1993) postulates the presence of a corona of hot electrons (𝑘𝑇e ' 10–
100 keV), responsible for the primary continuum in the hard X-
rays through Inverse Comptonization of UV photons (Sunyaev &
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Titarchuk 1980; Zdziarski et al. 2000). Despite widespread accep-
tance of this process, the source of energy for the plasma and the
conditions leading to its formation remain open questions. The ge-
ometry of this region further contributes to these debates, ranging
from a slab-corona model (Haardt & Maraschi 1991, 1993; Merloni
2003), in which the energy dissipation and electron heating occur
over a large volume, to a possible aborted jet located on the accre-
tion disc axis (lamppost geometry; see Ghisellini et al. 2004; Fabian
et al. 2017). Compton scattering will produce a polarization signal
which is strongly sensitive to the geometry of the scattering mate-
rial. Although spectroscopy and timing alone were not been able
to distinguish between geometrical models so far, their application
alongside polarization can aid in determining the characteristics of
the corona such as the Thomson optical depth 𝜏 and the electron
temperature 𝑘𝑇e (Shapiro et al. 1976). X-ray polarimetry is thus a
powerful tool that can be used to bring new insights on the innermost
regions of AGN. In particular, from ‘spherical’ lamppost coronae,
a polarization degree of one percent or so is expected, while larger
values are anticipated when the scattering medium is distributed as a
slab over the accretion disc (Poutanen & Svensson 1996; Tamborra
et al. 2018; Ursini et al. 2022).
The Imaging X-ray Polarimetry Explorer (IXPE, Weisskopf et al.

2022), launched on December 9, 2021, is a NASA/ASI mission and
the first X-ray imaging polarimeter in orbit after 40 years. Thanks to
three telescopes with polarization-sensitive imaging detectors (gas-
pixel detector, Costa et al. 2001) effective in the 2–8 keV energy band,
X-ray polarimetric studies on AGN are being carried out for the first
time. So far a total of four radio-quiet AGN (i.e., MCG-05-23-16,
the Circinus galaxy, NGC 4151 and IC 4329A) have been observed
by IXPE. A polarization degreeΠ < 4.7%was derived for MCG-05-
23-16, in agreement with expectations from a lamppost ‘spherical’
geometry of the corona, or a slab geometry if the inclination angle
of the system is less than 50◦ (Marinucci et al. 2022). On the other
hand, the Circinus galaxy shows a very high Π ∼ 28 ± 7 % with a
polarization angle perpendicular to the radio jet at about 𝜓X ∼ 18 ±
5◦ (Ursini et al. 2023). However, this source is Compton-thick with
no direct view of the corona, so all the polarization is ascribed to
reflection from an equatorial torus, as expected from the standard
Unification Model.
NGC 4151 is one of the brightest Seyfert galaxies in the local

universe. It has been classified as a Changing Look AGN (Penston &
Perez 1984; Puccetti et al. 2007; Shapovalova et al. 2008), going from
optical type 1.5 at high flux states (in which the source reaches up
to 𝐹0.5−10 keV ∼ 2.8× 10−10 erg s−1 cm−2) to optical type 1.8 at low
fluxes states (𝐹0.5−10 keV ∼ 8.7× 10−11 erg s−1 cm−2; see Antonucci
& Cohen 1983; Shapovalova et al. 2012; Beuchert et al. 2017a).
NGC4151 has been intensively observed by allmajorX-ray satellites.
It is characterised with significant spectral variability, and a complex
absorption structure, both from neutral and ionised gas (e.g. Beuchert
et al. 2017a). Below ∼2 keV, the soft X-ray emission is dominated
by emission lines (e.g. Schurch et al. 2004), likely arising from
photoionizated gas in the narrow-line region, as commonly found
in obscured AGN (Bianchi et al. 2006; Guainazzi & Bianchi 2007;
Bianchi et al. 2019). Previous studies found evidence for relativistic
reflection off the accretion disc, suggesting a near-maximal spinning
black hole (Cackett et al. 2014; Keck et al. 2015a; Beuchert et al.
2017a). Given a black hole (BH)mass of 4.57×107𝑀� (from optical
and UV reverberation, Bentz et al. 2006), the source has a relatively
low Eddington ratio, 1% (Keck et al. 2015a).
In the following, we present the spectral and spectro-polarimetric

analysis of the combined data from IXPE, XMM-Newton and NuS-
TAR, providing the most complete view to date of the inner accretion

flow in NGC 4151. The paper is organized as follows. In Sect. 2,
we describe the IXPE, XMM-Newton and NuSTAR observations and
data reduction. In Sect. 3, we report on the spectral and spectro-
polarimetric analysis. In Sect. 4 the results are discussed.

2 OBSERVATIONS AND DATA REDUCTION

IXPE (Weisskopf et al. 2022) observed NGC 4151 starting on De-
cember 8, 2022 with its three Detector Units (DU), for a net ex-
posure time of about 632 ks. The data were calibrated with a stan-
dard IXPE pipeline from the Science Operation Center (SOC).1 The
pipelinemainly contains the correction processes on the photoioniza-
tion events and the track reconstruction process following a standard
moments analysis (Bellazzini et al. 2003; Fabiani &Muleri 2014; Di
Marco et al. 2022). In addition, variations on gain properties that are
caused by susceptibility of gas status (e.g., temperature and pressure)
inside Gas Pixel Detector (GPD, Costa et al. 2001; Bellazzini et al.
2007; Fabiani et al. 2012; Baldini et al. 2021) and non-uniformity
of the charging on the Gas Electron Multiplier (GEM) material are
accounted for. The onboard calibration data was utilized to deal with
the small time scale variations (Ferrazzoli et al. 2020). The spurious
modulation was also taken into account in this process (Rankin et al.
2022). The scientific analysis was performed using the ixpeobssim
software version 30.2.1 (Baldini et al. 2022). Source and background
data were extracted centered on the source position in the detector
frame which covered the entire source emission and source-free re-
gions respectively. For the region selection criteria, we applied a 72′′
circle for the source and an annulus with an inner and outer radius of
150′′ and 240′′ for the background (Di Marco et al. 2023). In order
to estimate the polarization properties, we created (1) the polariza-
tion cube (PCUBE) based on the Kislat et al. (2015) method, which
provided results independent of any spectral modelling, and (2) 𝐼,
𝑄, and 𝑈 spectra using PHA1, PHAQ1, and PHAU1 algorithm in
the xpbin tool inside ixpeobssim. We utilised the version 12 instru-
ment response functions for both methods, which are contained in
ixpeobssim. We adopted a minimum of 30 counts binning for spectra
𝐼 and 0.2 keV constant energy binning for𝑄 and𝑈 spectra in order to
perform spectro-polarimetric analysis based on 𝜒2 statistics. For the
spectra, we employed the weighted method (Di Marco et al. 2022)
using the alpha075 response matrix to improve the sensitivity of
polarimetry measurements. In contrast, this feature is not currently
available within the pcube algorithm.

XMM-Newton observed NGC 4151 on December 17, 2022 for
50 ks of elapsed time with the EPIC pn (Strüder et al. 2001) and the
two MOS (Turner et al. 2001) cameras, operating in Small Window
and thin filter mode to avoid pile-up effects. Background flares were
present during the observation and after the filtering process, the
effective exposure time resulted to be of about 33 ks for the pn spec-
trum. The extraction radii for the source and the background spectra
are 20′′ and 30′′, respectively. The effective area was corrected with
the new SAS keyword, applyabsfluxcorr, expressly implemented
to provide a better agreement with simultaneous NuSTAR data.
TheNuSTAR (Harrison et al. 2013) observation started on Decem-

ber 16, 2022 simultaneously to XMM and IXPE pointings, with both
coaligned X-ray telescopes with Focal Plane Module A (FPMA) and
B (FPMB). TheNupipeline task and the latest calibration files avail-
able in the database (CALDB 20221229) were used to produce and

1 https://heasarc.gsfc.nasa.gov/docs/ixpe/analysis/
IXPE-SOC-DOC-009-UserGuide-Software.pdf

MNRAS 000, 1–9 (2023)

https://heasarc.gsfc.nasa.gov/docs/ixpe/analysis/IXPE-SOC-DOC-009-UserGuide-Software.pdf
https://heasarc.gsfc.nasa.gov/docs/ixpe/analysis/IXPE-SOC-DOC-009-UserGuide-Software.pdf


X-ray polarimetry of NGC 4151 3

Table 1. Polarization parameters for different energy bands.

Energy range ΠX ± 1𝜎 𝜓X ± 1𝜎
(keV) (%) (deg)

2.0 – 8.0 4.9 ± 1.1 86 ± 7

2.0 – 3.5 4.3 ± 1.6 42 ± 11
3.5 – 5.0 5.0 ± 1.4 99 ± 8
5.0 – 8.0 7.4 ± 1.9 88 ± 7

calibrate cleaned event files. In this case the source and background
extraction radii are 2′ and 1.22′, respectively. The net exposure time
for the FPMA and FPMB resulted to be 97 ks and 96.3 ks. Significant
deviations from the pn spectrum were still present in the NuSTAR
spectra below 4 keV, even after applying the correction mentioned
above. Therefore, we will consider NuSTAR data only above 4 keV
(see e.g. Madsen et al. 2020). Moreover, an energy shift between the
two instruments is evident at the iron line.2 In the following fits, we
thus applied a linear gain fit of ∼ 60 eV to the NuSTAR spectra. We
note here that a similar shift is found in AGN observations taken ∼1
month before and after our dataset (Serafinelli et al., in prep.; Ingram
et al., in prep.).
All the uncertainties are given at 68% (1𝜎) confidence level, unless

otherwise stated, while the upper/lower limits are quoted at 99%
(2.6𝜎) confidence level for one interesting parameter. Throughout our
analysis, we adopt a redshift 𝑧 = 0.003326 for NGC 4151 (Wolfinger
et al. 2013), and the cosmological parameters𝐻0 = 70 km s−1Mpc−1,
Λ0 = 0.73 and Λ𝑚 = 0.27.

3 DATA ANALYSIS

3.1 IXPE polarimetric analysis

We report the first significant polarization detection from NGC 4151
using PCUBE analysis. The measured polarization parameters from
the three combined DUs areΠX = 4.9%±1.1% and 𝜓X = 86◦±7◦ in
the 2–8 keV band with background subtraction. The detection signif-
icance of these polarization properties is above 99.99% confidence
level (∼ 4.4𝜎). In order to examine the energy dependency of the
polarization, we tested against the hypothesis that Q and U Stokes
parameters are constant via a 𝜒2 test, adopting different energy bin-
nings (from 2 to 12 bins over the entire energy band, e.g. Di Gesu
et al. 2022). We found a statistically significant (> 99% confidence
level) deviation from the constant behaviour in 𝑄, when adopting
three and four bins. Figure 1 and Table 1 show the data into 3 energy
bands: 2.0–3.5, 3.5–5.0, and 5.0–8.0 keV. In the polarization contour
plot, significant detections are found for the two higher-energy bins
(3.5–5.0 and 5.0–8.0 keV), while only a marginal detection can be
claimed for the first bin (2.0–3.5 keV), possibly suggesting also a
variation of the polarization angle, thus confirming the variability in
𝑄 mentioned above.

3.2 Spectral Analysis: XMM-Newton and NuSTAR

The spectral analysis of NGC 4151 is performed with xspec 12.13.0
(Arnaud 1996), taking into account the simultaneous 0.5–10 keV

2 The shift is still present if strictly simultaneous NuSTAR–XMM spectra are
considered. On the other hand, the MOS data are in perfect agreement with
the pn.

Figure 1. Polarization contours (68%, 90%, and 99% confidence levels for
two degrees of freedom) for the polarization degree ΠX and the polarization
angle 𝜓X with respect to the north direction. Colors refer to the 2.0–8.0
keV (black), 2.0–3.5 keV (red), 3.5–5.0 keV (yellow), and 5.0–8.0 keV (blue)
energy ranges, respectively.

XMM-Newton and 4–79 keV NuSTAR spectra. In the new observa-
tions, the source has been detected in a highflux statewith𝐹0.5−10 keV
∼ 1.7× 10−10 erg s−1 cm−2.
As mentioned in Sect. 1, the X-ray spectrum of this source is

remarkably complex with different emission and absorption com-
ponents (e.g., Weaver et al. 1994; Zdziarski et al. 1996; Yang et al.
2001; De Rosa et al. 2007; Kraemer et al. 2008; Lubiński et al. 2010).
Our best fit model implements and tries to simplify those adopted
by Keck et al. (2015a) and Szanecki et al. (2021) for the previous
XMM-Newton, Suzaku and NuSTAR observations of the source. The
Galactic absorbing column density, modelled with tbabs, is set to
𝑁H = 2.3 × 1020 cm−2 (Kalberla et al. 2005) and multiplicative
constants (found to be of the order of ∼ 1.20) take into account
cross-calibration uncertainties between the two FPM modules and
EPIC pn, as well as some flux variability of the source during the
longer elapsed time of theNuSTAR observation.We adopt the default
abundance table in xspec (Anders & Grevesse 1989).
In previous studies, a strong Fe K𝛼 emission line with a weak

relativistic component was reported in high flux states (e.g. Zoghbi
et al. 2019). In the new XMM-Newton and NuSTAR observations, the
Fe K𝛼 line profile clearly shows the imprints of significant ionized
absorption, which contributes to produce an overall modest redshift
in energy. However, no indications of further broader components
are found, the line being well modelled by a single Gaussian with
a resolved width of 𝜎 = 40 ± 10 eV and an equivalent width of
EW = 100 ± 6 eV. Therefore in the following, also to simplify the
spectro-polarimetric fit presented in Sect. 3.3, we will not include
any relativistic reflection component in our model, as instead used
in Keck et al. (2015a) and Szanecki et al. (2021). In any case, we

MNRAS 000, 1–9 (2023)
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note here that we verified that including a relativistic reflection com-
ponent to our broadband model gives a similar fit, not affecting in a
significant way the other main parameters of the model.
We model the primary continuum with a thermally Comptonized

continuum (nthcomp in xspec, Zdziarski et al. 1996; Życki et al.
1999), assuming seed photons from a disc-blackbody with tempera-
ture fixed at 𝑘𝑇bb = 8 eV (as expected from a standard accretion disc
with the BH mass and observed luminosity of NGC 4151, Shakura
& Sunyaev 1973). For the reflection component, we used BORUS
(Baloković et al. 2018, 2019), which models reprocessing from a
torus with variable covering factor, self-consistently illuminated by
a nthcomp spectrum with the same photon index and electron tem-
perature as the primary continuum. In view of the joint spectro-
polarimetric fit with the IXPE data presented in Sect. 3.3, we sep-
arated the reflection component from the corresponding fluorescent
lines with the two dedicated BORUS tables, linking all the parameters
(including the normalization). Since they are not constrained by the
fit, we fixed the cosine of the inclination and the covering factor of the
torus to 0.6 (appropriate for an intermediate Seyfert galaxy) and 0.5
(a standard value, e.g. Brightman et al. 2015; LaMassa et al. 2019),
respectively. Moreover, in order to account for the modest broaden-
ing and redshift of the iron line as reported above, we convolve the
BORUS tables with a gsmooth of ∼ 40 eV and a vashift3 of the
order of 1000 km s−1.
The X-ray spectrum of NGC 4151 is well-known to be strongly

affected by complex absorption. Similarly to Keck et al. (2015a), we
used two partial-covering neutral absorbing layers (PC, modelled by
zpcfabs) and a warm absorber (WA, modelled with zxipcf and
covering factor fixed at 1). Finally, as suggested by the presence of
emission lines at∼0.5 and∼ 0.9 keV and by previous results based on
high-resolution spectra (Schurch et al. 2004; Guainazzi & Bianchi
2007; Bianchi et al. 2019), the remaining soft X-ray emission is
modelledwith a photoionized plasma emission component, produced
with CLOUDY (Ferland et al. 1998) closely to what described in
Bianchi et al. (2010). Some further residuals due to an imperfect
modelization of the photoionized gas around the Ovii emission line
triplet at ∼ 0.5 keV are modelled with a Gaussian component.
In summary, our model can be written

in xspec as (tbabs)*(CLOUDY + zgauss +
PC*PC*WA*(vashift*gsmooth*(BORUS 1 + BORUS 2) +
nthcomp)). This gives a good representation of the XMM-Newton
+ NuSTAR data with 𝜒2/d.o.f = 743/660.
The best fit parameters are reported in Table 2, while spectra and

residuals are shown in Fig. 2. It is important to note that in this
model the contribution of the reflection component to the total 2–8
keV flux is of the order of 6 per cent, reaching up to ∼ 16 per cent
in the 6–8 keV band, due to the presence of the Fe K𝛼 line. In the
2–3.5 keV band, no contribution from the photoionized emission
is present, since it becomes significant only at lower energies (see
Fig. 2). On the other hand, in this band there is an excess with respect
to the absorbed primary continuum, which our model treats as the
leakage of the primary emission through the partial coverers. Any

3 An equivalent fit (Δ𝜒2 = +2 for the same d.o.f.) is obtained by instead
deconvolving the reflection components with rdblur, which introduce rela-
tivistic effects from an accretion disc around a non-rotating black hole (Fabian
et al. 1989). As expected, given the modest broadening of the line, the best
fit inner radius is very large (𝑟in = 110+40−20 𝑟g, where 𝑟g = 𝐺𝑀/𝑐2 is the
gravitational radius), and the inclination very low (𝑖 = 3+5−2 deg). All the other
parameters are the same, within errors, with respect to those of the best fit.

other component, used to model this excess, would contribute up to
20 per cent of the total flux in the 2–3.5 keV band.

3.3 Spectro-polarimetric analysis: XMM-Newton, NuSTAR and
IXPE

We added the IXPE data (𝐼, 𝑄 and 𝑈 spectra of the three detectors)
to the XMM-Newton+NuSTAR best fit presented above, with all the
spectral parameters linked to the other instruments, allowing only
an inter-calibration constant (found to be of the order of ∼ 0.80) for
each detector to vary. We then add separate polconstmultiplicative
models to account for the polarization of each additive component
of the global model. The polarization degree Π and angle Ψ are
set to 0 for the BORUS component producing the emission lines,
since they are expected to be intrinsically not polarized, as well as
for the CLOUDY component, which does not contribute at all in
the IXPE energy band (see previous Section). On the other hand,
the primary Comptonized continuum and the reflection component
associated to the other BORUS table have Π and Ψ free to vary. The
best fit gives 𝜒2/d.o.f= 1433/1264, with no appreciable variations in
the spectral parameters with respect to the one without IXPE, being
indeed dominated by the much higher sensitivity, spectral resolution
and broad band coverage of XMM-Newton andNuSTAR. Considering
the complex X-ray spectrum of NGC 4151 with multiple components
in absorption and emission, the cross-calibration uncertainties among
the several different instruments used, the variability of the source
and the much longer exposure time of IXPE with respect to XMM-
Newton and NuSTAR, we find this fit, if not ideal, acceptable given
the goal of the paper. Moreover, we note that the fit applied only
to the IXPE data gives a significantly better fit (𝜒2/d.o.f= 672/612),
confirming that the model is a good representation of the data in the
2-8 keV band, where all the polarimetric information is present.
In this configuration, we get loose constraints for the polarimetric

parameters, i.e. Π < 5% and unconstrained angle for the primary
continuum, and Π > 38% and Ψ = 96◦ ± 16◦ for the reflection
component. We thus linked the angles of the two components, either
to be equal or to differ by 90◦. In both cases, we still obtain that
the polarization is dominated by the reflection component, and the
polarization degree of the primary emission is an upper limit. We
therefore fixed the polarization properties of the reflection component
to physically motivated values, 15, 20, 30 per cent (as found, for
example, for the reflection-dominated Circinus galaxy, Ursini et al.
2023), constraining its polarization angle to be at 90◦ with respect to
that of the primary emission. The resulting fits are marginally worse
than the best fit, the 𝜒2 being 1452, 1453 and 1455 for 1266 d.o.f.,
respectively, and the polarization degree of the primary continuum
is now constrained at Π = 4.1 ± 0.8%, Π = 4.3 ± 0.8% and Π =

4.6± 0.8%with polarization angles Ψ = 82◦ ± 7◦, Ψ = 81◦ ± 7◦ and
Ψ = 80◦ ± 8◦, respectively.
These results may be driven by the lower Π and different Ψ ob-

served in the 2–3.5 keV band (see Table 1), possibly due to another
spectral component which dilutes the polarization of the primary
continuum. We therefore modified the best fit model with a spec-
troscopically equivalent one, but decoupling the soft X-ray emis-
sion leaking through the partial coverers from the primary emission,
which allows us to assign another polconst to this component.4We
set its Π and Ψ to 0 – this is physically motivated by the possibility
that the leaked continuum comes from a variety of line-of-sights,

4 Each zpcfabs has been replaced by the equivalent expression 𝑐*zphabs
+(1-𝑐), where 𝑐 is the same covering factor determined in the best fit.
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Table 2. Best fit parameters from the spectro-polarimetric analysis.

Parameter Value

CLOUDY (Photoionized emitter)

log𝑈 1.35 ± 0.01
log(𝑁H / cm−2) 21.63 ± 0.02

PC 1 (Neutral absorber 1)

log(𝑁H /cm−2) 10.49 ± 0.04
Cf 0.78 ± 0.01

PC 2 (Neutral absorber 2)

log(𝑁H / cm−2) 4.36 ± 0.01
Cf 0.95 ± 0.01

WA (Warm absorber)

log(𝑁H / cm−2) 13.60+0.92−0.86
log( 𝜉 / erg cm s−1) 4.12 ± 0.02
BORUS 1/2 (Neutral reflector 1/2)

log(𝑁H / cm−2) 24.45 ± 0.01
𝐴Fe 0.62 ± 0.01
norm 0.09 ± 0.01
nthcomp (Comptonized primary continuum)

Γ 1.85 ± 0.01
𝑘𝑇e [keV] 60+7−6
norm 0.09 ± 0.01

log(𝐹2−10 keV / erg cm−2 s−1) −9.78 ± 0.01
log(𝐿2−10 keV / erg s−1) 42.61 ± 0.01

or that this further soft component has instead another origin, inde-
pendent from the primary continuum and not taken into account by
our modelling. In this new configuration, with the two polarization
angles forced to differ by 90◦, the best fit is statistically equivalent to
the initial one (𝜒2/ d.o.f = 1441/1265), but now all the polarization
is attributed to the primary continuum, with Π = 7.7 ± 1.5% and
Ψ = 87◦ ± 6◦, while only an upper limit is found for the reflection
component Π < 27%. A similar result is obtained if the polarization
angles are forced to be the same, but the polarization degree of the
reflection component is completely unconstrained in this case.

4 DISCUSSION

4.1 The geometry of the X-ray corona

The measured polarization degree of NGC 4151, determined by both
the model-independent and spectro-polarimetric analysis, immedi-
ately excludes a ‘spherical’ lamppost along the disc axis as a possible
geometry for the hot corona in this source. Indeed, such a geome-
try is very symmetric, so the polarization degree is expected to be
lower than 1 − 3%, even for very high inclinations (e.g. Poutanen &
Svensson 1996; Tamborra et al. 2018; Ursini et al. 2022). Moreover,
the corresponding polarization angle is expected to be perpendicular
to the disc axis, while the measured Ψ is in the direction of the ra-
dio emission (∼ 83◦, Harrison et al. 1986; Ulvestad et al. 1998, and
references therein), suggesting instead that the polarization occurs
on the equatorial plane. Two other possible coronal geometries are
viable and will be considered here: a slab extending above and below
the accretion disc, and a wedge, in which the corona stretches up
to the accretion disc with a defined opening angle (Tagliacozzo et
al., in prep.). The slab geometry is investigated even if it is known
to produce relatively soft spectra (Γ ≥ 2) when radiative equilib-
rium between the disc and the corona is established (e.g. Haardt &

Maraschi 1993; Stern et al. 1995 and relevant discussion in Pouta-
nen et al. 2018). The somewhat harder photon index observed in
NGC 4151 can still be accommodated with this geometry assum-
ing that the cold accretion disc is truncated at some radius and the
inner part is occupied by the hot accretion flow. The seed photons
for Comptonization in this case may come from the outer cold disc
or be internal synchrotron photons (Veledina et al. 2011). It is very
difficult to distinguish between these two scenarios, because in both
cases photons undergo many scatterings before they reach the IXPE
energy band.
We followed the approach of Ursini et al. (2022), performing vari-

ous simulations with the two geometries, using the general relativis-
tic Monte Carlo radiative transfer code MONK (Zhang et al. 2019).
We have also cross-checked these results with those obtained with
an iterative radiation transport solver (Poutanen & Svensson 1996;
Veledina & Poutanen 2022). In our simulations, we assumed a BH
mass of 4.57 × 107𝑀� (Bentz et al. 2006), a spin 𝑎 = 0.998 and
an Eddington ratio 𝐿Bol/𝐿Edd = 1%. As for the corona, we adopted
a temperature of 60 keV, as derived from our spectral analysis (see
Table 2), and the Thomson optical depth (defined with respect to the
half-thickness of the slab/wedge5) 𝜏 = 0.5, which reproduces the
observed photon index (Γ = 1.85) in both geometries for the given
temperature. For both geometries, we consider the inner radius at the
innermost stable circular orbit (𝑅in = 1.24 𝑟g), while the outer radius
is at 100 𝑟g for the slab geometry, and coincides with the inner radius
of the accretion disc, 𝑅out = 𝑅discin = 25 𝑟g, for the wedge. For the
latter geometry, the tested opening angles are 30◦, 45◦ and 60◦. The
height of the slab is 1 𝑟g.
It isworth stressing that in all cases, the expected polarization angle

is parallel to the disc axis, so in agreement with the observed one.
The resulting polarization degree is shown in Figure 3, as a function
of the cosine of the inclination angle with respect to the observer.
It is clear that the observed polarization degree in NGC 4151 is
well reproduced in all cases, only assuming moderate inclinations
(𝑖 & 40◦ − 50◦), as reasonable for an intermediate Seyfert galaxy.
In particular, the inclination results to be more constrained in the
case of the slab and for low opening angles of the wedge, being in
the range 40◦ − 70◦. On the other hand, for larger opening angles
of the wedge, the required inclination can be higher. Note that these
different geometries also agree with the lack of a significant variation
of the polarization degree with energy (e.g., Ursini et al. 2022) in
agreement with the observations (see Sect. 3.1 and Table 1).
The disc inclination in NGC 4151 is very uncertain (Marin 2016).

It ranges from 𝑖 = 0◦ to 33◦ when estimated via the relativistic
reflection component in the X-rays (Nandra et al. 1997; Keck et al.
2015b; Beuchert et al. 2017b; Miller et al. 2018), but a much more
inclined system (∼58◦) is suggested by reverberation studies of the
broad-line region (BLR) (Bentz et al. 2022). The mismatch between
the various values comes from both the technique and the location of
the probed region (the disc or the BLR).Miller et al. (2018) suggested
that a warp between the innermost and outer part of the accretion disc
in NGC 4151 might resolve this apparent discrepancy in inclination.
However, it does not fit the IXPE results. In fact, the inclination
estimated from BLR reverberation studies matches better the one
obtained from the X-ray polarization. A more systematic analysis of
bright and nearby Seyfert-1s is needed to verify this conclusion.

5 This definition is the same as in compTT (Titarchuk 1994), while it is half
that of compPS in the standard configuration (Poutanen & Svensson 1996).
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Figure 2. Left panel: XMM-Newton/EPIC pn (in black), grouped NuSTAR FPMA and FPMB (in red), IXPE grouped Stokes 𝐼 (in blue) simultaneous spectra of
NGC 4151 with residuals. The dashed lines represent the different model components. Right-panel: 𝑄 (in purple) and𝑈 (in orange) grouped Stokes spectra are
shown with residuals.

Figure 3. Monte Carlo simulations performed with the Comptonization
code monk. Both wedge and slab geometry have been considered. The
light green band shows the polarization degree range resulting from the
model-independent (see Sect. 3.1) and the spectro-polarimetric analysis (see
Sect. 3.3). We adopt for all the simulations 𝑘𝑇e = 60 keV and 𝜏 = 0.5. The
obtained PA is always parallel to the disc axis. See text for details.

4.2 Comparison to lower energies polarization

Marin et al. (2020) presented themost extensive review of the ultravi-
olet, optical and infrared linear continuumpolarization ofNGC4151.
From the ultraviolet to the near-infrared (≤ 1 𝜇m), the polarization
degree is wavelength-dependent but does not exceed 2%, while the
polarization position angle remains constant at 80◦–90◦. Because the
polarization angle is parallel to the parsec-scale radio axis, NGC4151
optical polarization emerges from reprocessing along the equatorial
plane. Gaskell et al. (2012) proved, using polarization reverberation
mapping, that the polarization emerges from scattering in a flattened
region within the low-ionization component of the BLR. The time-
lag and polarization angle are inconsistent with both scattering onto
the dusty torus and with an intrinsic polarization of the continuum.
However, the polarized light spectrum of NGC 4151 appears to cor-
roborate the existence of an optically thick, thermally heated accre-

tion disc structure, at least in its outer near-IR emitting radii (Marin
et al. 2020). In the infrared, a smooth rotation of the polarization po-
sition angle down to ∼ 45◦ indicates the onset of dichroic absorption
from aligned dust grains in the torus. We note that a similar polariza-
tion angle is found here in the 2–3.5 keV band (𝜓X = 42 ± 11◦, see
Table 1), although with lower statistical confidence than at higher
energies. Interestingly, this angle would be in agreement with the
extended narrow-line region observed with Chandra (Wang et al.
2011) and HST (45◦ ± 5◦, Evans et al. 1993; Das et al. 2005).
The X-ray polarization degree we measured is different from the

archival and contemporaneous6 ultraviolet, optical and infrared po-
larization of NGC 4151. It indicates that X-ray polarization comes
from a different region than the BLR or the torus, and is indeed con-
sistent with an origin in a slab-like corona. The polarization angle,
however, is the same as in the ultraviolet and optical, indicating that
reprocessing mainly occurs along the equatorial plane from the X-
rays to the near-infrared. A deeper analysis of the X-ray to infrared
polarization of NGC 4151 will be presented in a future paper.
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