X-ray pulsar GRO J1008-57 as an orthogonal rotator

Sergey S. Tsygankov ${ }^{1}$, Victor Doroshenko ${ }^{2}$, Alexander A. Mushtukov ${ }^{3}$, Juri Poutanen ${ }^{1}$, Alessandro Di Marco ${ }^{4}$, Jeremy Heyl ${ }^{5}$, Fabio La Monaca ${ }^{4}$, Sofia Forsblom ${ }^{1}$, Christian Malacaria ${ }^{6}$, Herman L. Marshall ${ }^{7}$, Valery F. Suleimanov ${ }^{2}$, Jiri Svoboda ${ }^{8}$, Roberto Taverna ${ }^{9}$, Francesco Ursini ${ }^{10}$, Iván Agudo ${ }^{11}$, Lucio A. Antonelli ${ }^{12,13}$, Matteo Bachetti ${ }^{14}$, Luca Baldini ${ }^{15,16}$, Wayne H. Baumgartner ${ }^{17}$, Ronaldo Bellazzini ${ }^{15}$, Stefano Bianchi ${ }^{10}$, Stephen D. Bongiorno ${ }^{17}$, Raffaella Bonino ${ }^{18,19}$, Alessandro Brez ${ }^{15}$, Niccolò Bucciantini ${ }^{20,21,22}$, Fiamma Capitanio ${ }^{4}$, Simone Castellano ${ }^{15}$, Elisabetta Cavazzuti ${ }^{23}$, Chien-Ting Chen ${ }^{24}$, Stefano Ciprini ${ }^{25,13}$, Enrico Costa ${ }^{4}$, Alessandra De Rosa ${ }^{4}$, Ettore Del Monte ${ }^{4}$, Laura Di Gesu 23, Niccolò Di Lalla ${ }^{26}$, Immacolata Donnarumma ${ }^{23}$, Michal Dovčiak ${ }^{8}$, Steven R. Ehlert ${ }^{17}$, Teruaki Enoto ${ }^{27}$, Yuri Evangelista ${ }^{4}$, Sergio Fabiani ${ }^{4}$, Riccardo Ferrazzoli ${ }^{4}$, Javier A. Garcia ${ }^{28}$, Shuichi Gunji ${ }^{29}$, Kiyoshi Hayashida ${ }^{30 \star}$, Wataru Iwakiri ${ }^{31}$, Svetlana G. Jorstad ${ }^{32,33}$, Philip Kaaret ${ }^{17}$, Vladimir Karas ${ }^{8}$, Fabian Kislat ${ }^{34}$, Takao Kitaguchi ${ }^{27}$, Jeffery J. Kolodziejczak ${ }^{17}$, Henric Krawczynski ${ }^{35}$, Luca Latronico ${ }^{18}$, Ioannis Liodakis ${ }^{36}$, Simone Maldera ${ }^{18}$, Alberto Manfreda ${ }^{37}$, Frédéric Mari ${ }^{38}$, Andrea Marinucci ${ }^{23}$, Alan P. Marscher ${ }^{32}$, Francesco Massaro ${ }^{18,19}$, Giorgio Matt ${ }^{10}$, Ikuyuki Mitsuishi ${ }^{39}$, Tsunefumi Mizuno ${ }^{40}$, Fabio Muleri ${ }^{4}$, Michela Negro ${ }^{41,42,43}$, Chi-Yung Ng^{44}, Stephen L. O’Dell ${ }^{17}$, Nicola Omodei ${ }^{26}$, Chiara Oppedisano ${ }^{18}$, Alessandro Papitto ${ }^{12}$, George G. Pavlov ${ }^{45}$, Abel Lawrence Peirson ${ }^{26}$, Matteo Perri ${ }^{13,12}$, Melissa Pesce-Rollins ${ }^{15}$, Pierre-Olivier Petrucci ${ }^{46}$, Maura Pilia ${ }^{14}$, Andrea Possenti ${ }^{14}$, Simonetta Puccetti ${ }^{13}$, Brian D. Ramsey ${ }^{17}$, John Rankin ${ }^{4}$, Ajay Ratheesh ${ }^{4}$, Oliver J. Roberts ${ }^{24}$, Roger W. Romani ${ }^{26}$, Carmelo Sgrò ${ }^{15}$, Patrick Slane ${ }^{47}$, Paolo Soffitta ${ }^{4}$, Gloria Spandre ${ }^{15}$, Douglas A. Swartz ${ }^{24}$, Toru Tamagawa ${ }^{27}$, Fabrizio Tavecchio ${ }^{48}$, Yuzuru Tawara ${ }^{39}$, Allyn F. Tennant ${ }^{17}$, Nicholas E. Thomas ${ }^{17}$, Francesco Tombesi ${ }^{49}, 25,50$, Alessio Trois ${ }^{14}$, Roberto Turolla ${ }^{9,51}$, Jacco Vink ${ }^{52}$, Martin C. Weisskopf ${ }^{17}$, Kinwah Wu ${ }^{51}$, Fei Xie ${ }^{53,4}$, and Silvia Zane ${ }^{51}$

(Affiliations can be found after the references)

Abstract

X-ray polarimetry is a unique way to probe geometrical configuration of highly-magnetized accreting neutron stars (X-ray pulsars). GRO J1008-57 is the first transient X-ray pulsar observed at two different flux levels by the Imaging X-ray Polarimetry Explorer (IXPE) during its outburst in November 2022. The polarization properties were found to be independent of the source luminosity, with the polarization degree varying between non-detection to about 15% over the pulse phase. Fitting the phase-resolved spectro-polarimetric data with the rotating vector model allowed us to estimate the pulsar inclination $\left(130^{\circ}\right.$, which is in good agreement with the orbital inclination), the position angle (75°) of the pulsar spin axis, and the magnetic obliquity $\left(\sim 74^{\circ}\right)$. This makes GRO J1008-57 the first confidently identified X-ray pulsar as a nearly orthogonal rotator. The results are discussed in the context of the neutron star atmosphere models and theories of pulsars' axis alignment.

Key words. accretion, accretion disks - magnetic fields - pulsars: individual: GRO J1008-57 - stars: neutron - X-rays: binaries

1. Introduction

The physics of interaction of astrophysical plasmas with ultrastrong magnetic and radiation fields in the vicinity of neutron stars (NSs) is reflected in the observed properties of accreting X-ray pulsars (XRPs; see Mushtukov \& Tsygankov 2022, for a recent review). Thus the analysis of the observational data can be used in principle to study a complex interplay of several physical processes defining such interaction. However, the sheer complexity of the problem together with a large uncertainty in the basic geometry of pulsar emission regions so far limited the potential of X-ray pulsars as laboratories for physics under extreme conditions. The situation might change with the launch of the first imaging space X-ray polarimeter, the Imaging X-ray Polarimeter Explorer (IXPE, Weisskopf et al. 2022), which has opened a new observational window on X-ray pulsars and is considered to be a unique tool to break several model degeneracies through independent constraints on the geometrical parameters of the system. During the first year of operation in orbit, IXPE observed several XRPs yielding results surprisingly much at variance with pre-launch theoretical predictions (Doroshenko et al. 2022, Tsygankov et al. 2022). In particular, the emission of XRPs was expected to be strongly polarized (up to 80%, see, e.g., Meszaros et al.|1988, Caiazzo \& Heyl 2021), and a significantly lower polarization degree (PD) was expected

[^0]to be theoretically possible only at low accretion rates due to the inverse temperature profile in the atmosphere of an accreting NS (González-Caniulef et al. 2019; Mushtukov et al. 2021). However, it was found that even bright XRPs (with luminosities exceeding $10^{37} \mathrm{erg} \mathrm{s}^{-1}$) show PD well below 20% even in the phase-resolved data (Doroshenko et al. 2022; Marshall et al. 2022, Tsygankov et al. 2022).

The cause at the basis of this discrepancy is unclear and can be related not only to the physics within the emission region, but also to the potential complexity of the geometry of the emission region itself, and of the accretion flow, which may affect the observed polarization signal. Different sites of the polarized emission in the NS vicinity were discussed by Tsygankov et al. (2022), in particular: (i) intrinsic polarization from polar hotspots, (ii) reflection of the emission by the NS surface, (iii) reflection by the accretion curtain, (iv) reflection by the accretion disk, (v) scattering by the stellar wind, and (vi) reflection by the optical companion. Therefore, to exclude the geometrical factor, probing different scenarios of polarization production in the NS atmosphere requires multiple observations of the same source at different mass accretion rates.

The most obvious candidates for such an observational campaign are transient XRPs with a Be optical companion (Be/XRP; see Reig 2011, for a review), exhibiting regular outbursts every orbital cycle due to enhanced accretion rate at around the time of periastron passage. One of the most predictable and best-studied

Fig. 1. Left: Long-term light curve of GRO J1008-57 in the $4-10 \mathrm{keV}$ energy band obtained by the MAXI all-sky monitor (black points). Blue and red shaded stripes show the time periods of the first and second IXPE observations, respectively. Right: The light curves of GRO J1008-57 in the $2-8 \mathrm{keV}$ energy band summed over three modules of IXPE during the first (top) and second (bottom) observation.

Be/XRPs is GRO J1008-57 (Kühnel et al.|2013). It was discovered in 1993 by the BATSE instrument on board the Compton Gamma-Ray Observatory as a transient XRP with a spin period of $93.587 \pm 0.005 \mathrm{~s}$ (Stollberg et al. 1993). GRO J1008-57 shows both giant, Type II, and Type I (associated with the periastron passage) outbursts, related to the Be type of the optical companion (B1-B2 Ve star; Coe et al. 2007). The distance to GRO J1008-57 was recently updated using the Gaia data to be $3.6 \pm 0.2 \mathrm{kpc}$ (Fortin et al. 2022). The orbital parameters of the binary system are known as well: the orbital period $P_{\text {orb }}=249.48 \pm 0.04 \mathrm{~d}$, the projected semi-major axis $a_{\mathrm{x}} \sin i=$ $530 \pm 60 \mathrm{lt} \mathrm{s}$, the longitude of periastron $\omega=-26 \pm 8 \mathrm{deg}$, and the eccentricity $e=0.68 \pm 0.02$ (Coe et al. 2007; Kühnel et al. 2013).

The broadband energy spectrum of GRO J1008-57 is known to depend on the source luminosity and at the lowest fluxes exhibits a double-hump structure (Lutovinov et al. 2021), typical for the low-luminosity XRPs (see, e.g., Tsygankov et al. 2019ba). The cyclotron absorption feature at $\sim 88 \mathrm{keV}$ in the energy spectrum of the source was first discovered in the CGRO/OSSE data (Shrader et al. 1999) and was later confirmed by Suzaku and NuSTAR as the fundamental at $E_{\text {cyc }}=75-78 \mathrm{keV}$ (Yamamoto et al. 2013, Bellm et al. 2014) and by Insight-HXMT at $E_{\text {cyc }}=90.3 \mathrm{keV}$ (Ge et al. 2020). This makes GRO J1008-57 an XRP with one of the strongest confirmed magnetic field, around $10^{13} \mathrm{G}$. Recently, it was shown that even between periastron passages, the NS continues to steadily accrete matter from the recombined accretion disc emitting at the level of $\sim 10^{34}-10^{35} \mathrm{erg} \mathrm{s}^{-1}$ (Tsygankov et al. 2017a|b).

Here we present the results of the analysis of GRO J1008-57 observations performed by IXPE during the source periastron passage in two different luminosity states. First, we describe the observations and the data reduction procedures in Sect. 2. The results are presented in Sect. 3 We then discuss possible sources of the observed polarization and the geometry of the pulsar in

Sect. 4. and finally summarize results and present our conclusions in Sect. [5]

2. Data

The Imaging X-ray Polarimetry Explorer (IXPE), a NASA mission in partnership with the Italian Space Agency, was launched on 2021 December 9. It consists of three identical grazing incidence telescopes, providing imaging polarimetry over the $2-$ 8 keV energy band with a time resolution of the order of $10 \mu \mathrm{~s}$. Each telescope comprises an X-ray mirror assembly and a polarization-sensitive detector unit (DU) equipped with a gaspixel detector (Soffitta et al. 2021, Baldini et al. 2021). A detailed description of the observatory and its performance is given in Weisskopf et al. (2022).

IXPE observed GRO J1008-57 twice during the same Type I outburst over the periods of 2022 Nov 13-14 and Nov 18-20 with a total effective exposure of $\simeq 85 \mathrm{ks}$ and $\simeq 102 \mathrm{ks}$, respectively. Level 2 data were processed with the ixpeobssim package (Baldini et al. 2022) version 30.2.1 ${ }^{1}$ using the Calibration database released on 2022 November 17.

Source photons were collected from a circular region with radius $R_{\text {src }}$ of $60^{\prime \prime}$ centered on the source position. Following the prescription by Di Marco et al. (2023) for the sources with high count rate ($\gtrsim 2 \mathrm{cnt} \mathrm{s}^{-1}$), the background has not been subtracted from the data, because it is negligible. For the timing analysis, the photons arrival times were corrected to the Solar system barycenter using the standard barycorr tool from the fTools package, with the effects of binary motion also taken into account using the orbital parameters from Kühnel et al. (2013).

For the spectro-polarimetric analysis, the flux (Stokes parameter I) energy spectra have been binned to have at least 30 counts per energy channel. The same energy binning has been also applied to the spectra of the Stokes parameters Q and U. Taking

[^1]into account the high number of source counts and low background level, the unweighted approach has been applied. All the spectra were fitted using the xspec package of version 12.12.1 (Arnaud 1996) using version 12 of the instrument response functions and applying the χ^{2} statistic. The uncertainties are given at the 68.3% confidence level unless stated otherwise.

3. Results

3.1. Timing analysis

The long-term light curve of GRO J1008-57 obtained with the MAXI all-sky monitor (Matsuoka et al. 2009 ${ }^{2}$ is shown in Figure 1 along with source light curves as observed by IXPE during the two observations which differ by a factor of ~ 2 in flux. In the low state, the observed luminosity in the $2-8 \mathrm{keV}$ range was about $L_{\text {low }}=8.6 \times 10^{35} \mathrm{erg} \mathrm{s}^{-1}$, while the bright state had $L_{\text {high }}=1.6 \times 10^{36} \mathrm{erg} \mathrm{s}^{-1}$. The source did not exhibit any significant variability within either individual observation, which allowed us to average all the available data. To study the effect of different mass accretion rates on the polarization properties, the two observations were first analyzed independently.

The high counting statistics allowed us to measure the spin period of the NS with good accuracy, $P_{\text {spin-high }}=93.133(3) \mathrm{s}$ and $P_{\text {spin-low }}=93.146(4) \mathrm{s}$, in the first and second IXPE observations, respectively (the reported values and uncertainties are estimated using the phase-connection technique following Deeter et al. 1981). The pulsed fraction, defined as $P F=\left(F_{\max }-\right.$ $\left.F_{\min }\right) /\left(F_{\max }+F_{\min }\right)$, where $F_{\max }$ and $F_{\min }$ are the maximum and minimum count rates in the pulse profile constructed using 80 phase bins, was found to be around 60% in both flux states. The resulting pulse profiles in four energy bands are shown in Figure 2. The pulse profile has a double-peaked shape with the first peak gradually disappearing at higher energies, which is peculiar for this source (see, e.g., Naik et al.|2011). We see that the pulse profiles in the two luminosity states agree well, which already indicates a lack of significant changes in the accretion geometry.

3.2. Polarimetric analysis

To understand whether also the polarimetric analysis supports this conclusion, we conducted pulse phase-averaged and phaseresolved analysis of IXPE data for both observations individually. First, we performed the polarimetric analysis of the data using the formalism by Kislat et al. (2015) implemented in the ixpeobssim package (Baldini et al. 2022) under the pcube algorithm in the xpbin tool. Phase-averaged analysis in the $2-8$ keV energy band resulted in low PD values of $4.1 \pm 0.9 \%$ and $3.4 \pm 1.1 \%$ for the bright and low states, respectively, with the corresponding polarization angle (PA , measured from north to east) values of -3.8 ± 6.4 and -9.1 ± 9.2 deg, i.e. the results are consistent within uncertainties. We note, however, that since the PA is expected to be strongly variable over the pulsar spin phase, these phase-averaged results do not contain much useful information.

Therefore, as the next step, we performed the phase-resolved polarimetric analysis. For that, we used all the available data in each observation in the $2-8 \mathrm{keV}$ band binned into 14 phase bins. The number of phase bins was selected to trace the strongly variable PA from one side and to get sufficiently high statistics from another. The results are shown in Figures 3 and 4 . We see that the

[^2]Table 1. Spectral parameters for the best-fit model for the two flux states of the source separately and combined; uncertainties are at $68.3 \% \mathrm{CL}$.

Parameter	Value	Units
	Bright state	$10^{22} \mathrm{~cm}^{-2}$
$N_{\text {H }}$	2.92 ± 0.06	
const $_{\text {DU } 2}$	0.964 ± 0.004	
const ${ }_{\text {du3 }}$	0.924 ± 0.004	
Photon index	0.98 ± 0.02	
PD	3.8 ± 0.7	$\begin{aligned} & \% \\ & \mathrm{deg}^{2} \\ & 10^{-10} \mathrm{erg} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \\ & \mathrm{erg} \mathrm{~s}^{-1} \text { at } d=3.6 \mathrm{kpc} \end{aligned}$
PA	-5.9 ± 5.3	
Flux (2-8 keV)	10.49 ± 0.05	
Luminosity ($2-8 \mathrm{keV}$)	1.6×10^{36}	
χ^{2} (d.o.f.)	1552 (1334)	
	Low state	$10^{22} \mathrm{~cm}^{-2}$
$N_{\text {H }}$	3.39 ± 0.08	
const ${ }_{\text {du } 2}$	0.962 ± 0.005	
const ${ }_{\text {DU3 }}$	0.928 ± 0.005	
Photon index	1.13 ± 0.02	
PD	3.9 ± 0.9	$\begin{aligned} & \% \\ & \text { deg } \\ & 10^{-10} \mathrm{erg} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \\ & \operatorname{erg~s}^{-1} \text { at } d=3.6 \mathrm{kpc} \end{aligned}$
PA	-6.7 ± 6.4	
Flux (2-8 keV)	5.57 ± 0.03	
Luminosity ($2-8 \mathrm{keV}$)	0.9×10^{36}	
χ^{2} (d.o.f.)	1513 (1298)	
Combined data		
$N_{\text {H }}$ (bright)	2.92 ± 0.07	$10^{22} \mathrm{~cm}^{-2}$
$N_{\text {H }}$ (low)	3.39 ± 0.08	$10^{22} \mathrm{~cm}^{-2}$
Photon index (bright)	0.98 ± 0.02	
Photon index (low)	1.13 ± 0.02	
PD	3.9 ± 0.5	$\begin{aligned} & \% \\ & \mathrm{deg} \end{aligned}$
PA	-6.2 ± 4.1	
χ^{2} (d.o.f.)	3066 (2634)	

normalized Stokes parameters $q=Q / I$ and $u=U / I$ are indeed strongly variable over the pulse phase, resulting in a relatively low phase-averaged PD value.

To take properly into account the energy dispersion and the spectral shape, we also conducted spectro-polarimetric analysis through a joint fit of the I, Q and U spectra (prepared with the PHA1, PHA1Q, and PHA1U algorithms in the xpbin tool) using the xspec package (see Strohmayer 2017). Although the broadband spectrum of the source depends on the luminosity, below 10 keV its shape can be described with a simple absorbed power law in a very broad range of luminosities (Tsygankov et al.|2017a).

We first applied the model consisting of a power law modified by the interstellar absorption (tbabs in xsPec with abundances adopted from Wilms et al. 2000), to the phase-averaged data in the bright and low states separately. The power-law component was combined with a constant polarization model (energy-independent PD and PA), polconst in xspec. An additional multiplicative constant const was introduced to account for possible discrepancies in absolute effective area calibration of independent DUs; the constant was fixed to unity for DU1, taken as a reference. The final form of the model in xspec is const \times tbabs \times polconst \times powerlaw.

As a result, we obtained polarization parameters fully consistent with values obtained from the energy-binned analysis using the pcube algorithm. The parameters of the best-fit model are presented in Table 1 The quality of the obtained fits for both observations can be seen from Fig. 5] where the energy spectra for

Fig. 2. Pulse profile of GRO J1008-57 in different energy bands as seen by $I X P E$ in the bright (left) and low (right) states. Data from the three telescopes were combined. The zero phase was chosen to coincide for both observations using cross-correlation of the profiles.

Fig. 3. Variations of the normalized Stokes parameters q and u with the pulsar phase, averaged over all DUs in the $2-8 \mathrm{keV}$ energy band (gray circles and arrows) for the bright (left) and low (right) states of GRO J1008-57. Each circle corresponds to a specific phase bin, numbered successively following the binning shown in Fig. 4 . The circle radius represents the 1σ uncertainty value. The phase-averaged value is shown with a red cross in the corresponding panel.
I, Q and U Stokes parameters are shown with the corresponding residuals.

To study the energy spectrum and polarization properties of GRO J1008-57 as a function of the spin phase, we repeated our spectro-polarimetric analysis using the same phase binning applied in the energy binned one (pcube algorithm). For the spectral fit, we used the same model const \times tbabs \times powerlaw \times polconst, but with the crosscalibration constants fixed at the values derived from the phaseaveraged analysis (from Table 1). The fit results (the PD and PA values) are presented in Fig. 4 .

We see from Fig. 4 that there is no significant difference in the polarization properties of the source during different obser-
vations. Therefore, to increase the counting statistics, we combined the data from both observations after the phase alignment using the broadband pulse profiles. After that, we repeated both phase-averaged and phase-resolved spectro-polarimetric analysis applying the same phase binning and spectral model. To take into account the dependence of the spectral shape on the GRO J1008-57 luminosity, we allowed in the joint fit the absorption value N_{H}, the photon index and the normalization to vary independently in the two data sets, whereas PD and PA were tied. In the phase-resolved analysis all these parameters (including N_{H}) were allowed to vary over the spin phase to reflect possible inhomogeneities of matter flows around the NS. Energy binned (pcube) analysis was performed on the combined dataset

Fig. 4. Dependence of the normalized flux in the $2-8 \mathrm{keV}$ energy band, normalized Stokes parameters q and u (based on the formalism by Kislat et al. 2015), PD, and PA (from the spectro-polarimetric analysis) on the pulse phase for two IXPE observations separately (left) and combined (right). Data from the three IXPE telescopes are combined. Vertical dash-dotted lines show the positions of two minima in the profile and are added for illustrative purposes. The black solid line in the bottom right panel shows the best-fit rotating vector model (see Sect. 4.2 .
as well. The obtained results are summarized in Fig. 4 and 6 and Tables 1 and 2

Modification of the polconst polarization component of the best-fit model with pollin and polpow, which correspond to a linear and a power-law dependence of PD and PA on energy, respectively, did not lead to any significant improvement of the fit quality. Namely, for the phase-averaged data combined over both observations, it resulted in $\Delta \chi^{2} \sim 1$ for 2 d.o.f. for both pollin and polpow models. For the phase-resolved data, the $\Delta \chi^{2}$ value did not exceed ~ 5 for 2 d.o.f. with the corresponding F-test probability of ~ 0.1. We conclude, therefore, that the available data imply that there are no strong variations of the polarization properties within the IXPE energy band. This result is consistent with the results obtained for the other XRPs observed with IXPE (Her X-1, Doroshenko et al. 2022, Cen X-3, Tsygankov et al. 2022).

4. Discussion

4.1. Polarization mechanisms

Under the condition of a strong magnetic field, the medium experiences birefringence when the phase velocity of photons depends on their polarization state. In this case, the photons tend to propagate in the form of two orthogonal polarization modes: the ordinary (O-mode) and extraordinary (X-mode) ones (Gnedin \& Pavlov|1974). The polarization of both modes is close to the linear. The electric field vector of the X-mode photons oscillates perpendicular to the ambient magnetic field direction, while the electric vector of O-mode photons has a component along the
field. The cross sections of the major processes of interaction between radiation and matter are strongly dependent on the polarization mode (see, e.g., Pavlov \& Gnedin 1984, Harding \& Lai 2006). Below the cyclotron resonance, the cross sections for photons of the O-mode tend to be significantly larger in comparison to the cross sections of X-mode photons. Consequently, one can expect that the flux leaving the NS atmosphere should be dominated by the X-mode photons with a resulting high PD value, dependent, however, on the specific structure of the atmosphere.

As already mentioned above (see Sect. 3.2), we did not find any significant difference in the polarization properties of GRO J1008-57 in the two states, with the luminosity differing by a factor of two. We note that the geometry of the emitting regions at the NS surface in XRPs is known to depend on accretion luminosity, and in particular is expected to change dramatically with the onset of an accretion column. Indeed, if the luminosity is below the critical one (Basko \& Sunyaev 1976), the radiative force in the vicinity of the NS surface is small and the accretion process results in the hotspot-geometry of the emitting regions. If the luminosity reaches the critical value, the radiative force becomes sufficiently high to stop the accreting material above the NS surface in a radiation-dominated shock, resulting in an extended accretion column above the stellar magnetic poles. Taking into account the cyclotron energy observed in GRO J1008-57 at around 80 keV and the corresponding surface magnetic field strength $\sim 10^{13} \mathrm{G}$, one would expect the critical luminosity to be $L_{\text {crit }} \sim$ few $\times 10^{37} \mathrm{erg} \mathrm{s}^{-1}$ (Mushtukov et al. 2015). It is an order of magnitude higher than the observed luminosity level in both observations. Thus, we expect that the ra-

Fig. 5. Energy distributions of the Stokes parameters I, Q and U for the bright (upper plots) and low (lower plots) states of GRO J1008-57 with the best-fit model shown with the black solid line. The residuals between the data and the model normalized for the errors are shown in the bottom panels of the corresponding plots. The different colors represent the three IXPE detectors: DU1 in blue, DU2 in orange and DU3 in green.
diative force in the vicinity of the NS surface does not affect the dynamics of the accretion flow and the X-ray photons are emitted from hotspots in both IXPE observations. Therefore, the lack of dramatic changes in the emission region geometry is not surprising.

At sub-critical mass accretion rates, the flow is decelerated in the atmosphere of the NS via Coulomb collisions, resulting in an inverse temperature profile with hotter upper layers and a cooler underlying atmosphere (Zel'dovich \& Shakura 1969; Suleimanov et al. 2018). The typical braking distance of the accretion flow in the atmosphere depends on the flow velocity (Nelson et al. 1995), which is similar in the two states of GRO J1008-57, and is not affected by the mass accretion rate. Thus, the relative distribution of energy release in the atmosphere is expected to be very similar. The absolute value of the local temperature can be different due to different local energy release. On the other hand, considering that the accretion luminosity in the two observations changes by factor ~ 2 only, the local temperature is also not expected to change a lot (i.e. by a factor of $2^{1 / 4}$ only). Because of that, we do not expect significant variations in polarization in the two observed states.

Detailed analysis of the radiative transfer problem in the atmosphere of a NS shows that the polarization composition of Xray flux leaving the atmosphere is strongly affected by the temperature structure and relative contribution of magnetized vacuum and plasma to the dielectric tensor of the medium. At a certain optical depth in the atmosphere of the NS, the contribution of magnetized vacuum and plasma becomes comparable, which leads to the mixing of polarization modes, which is called vacuum resonance. It appears that the optical depth of the vacuum resonance in the atmosphere influences the final contribution of X - and O - modes into X-ray energy flux leaving the NS atmosphere. In particular, the low PD observed in both states of GRO J1008-57 can be explained if the position of the vacuum resonance and corresponding mode conversion in the atmosphere is located in the transition region with a strong temperature and mass density gradients, i.e. at the border between the overheated upper layer and colder underlying atmosphere (see details in Doroshenko et al. 2022).

The correlation between the PD and the flux observed during the pulsation period (see Fig. (4) agrees with the expected inverse temperature profile when the accretion luminosity is well below the critical value. Under this condition, the beam pattern of

Fig. 6. Polarization vectors as a function of the phase of GRO J1008-57 based on the spectral fitting of the combined data from both IXPE observations. In each plot, the PD and PA contours at $68.27 \%, 95.45 \%$ and 99.73% confidence levels (red, green and blue, respectively) are shown in polar coordinates for 14 different phase intervals (coinciding with the ones defined in Fig. 4 .

Table 2. Spectral parameters for the phase-resolved spectro-polarimetric analysis of the combined data.

Phase	N_{H} (bright) $\left(10^{22} \mathrm{~cm}^{-2}\right)$	N_{H} (low) $\left(10^{22} \mathrm{~cm}^{-2}\right)$	Photon index (bright)	Photon index (low)	PD $(\%)$	PA (deg)	χ^{2} (d.o.f.)
$0.000-0.071$	0.9 ± 0.3	0.9 ± 0.5	0.87 ± 0.09	1.06 ± 0.13	6.4 ± 3.4	2.4 ± 16.0	$1133(1123)$
$0.071-0.143$	3.2 ± 0.3	3.5 ± 0.3	1.29 ± 0.06	1.39 ± 0.08	6.1 ± 2.2	12.1 ± 10.7	$1503(1570)$
$0.143-0.214$	3.0 ± 0.2	3.7 ± 0.3	1.29 ± 0.05	1.51 ± 0.07	7.3 ± 1.9	-20.6 ± 7.8	$1632(1711)$
$0.214-0.286$	3.4 ± 0.2	3.4 ± 0.3	1.31 ± 0.05	1.38 ± 0.06	10.1 ± 1.8	-31.9 ± 5.3	$1728(1764)$
$0.286-0.357$	3.4 ± 0.2	3.4 ± 0.3	1.27 ± 0.05	1.27 ± 0.06	9.2 ± 1.8	-45.3 ± 5.7	$1838(1793)$
$0.357-0.429$	2.5 ± 0.2	3.4 ± 0.3	0.81 ± 0.05	1.03 ± 0.07	5.4 ± 2.0	-77.9 ± 10.9	$1754(1741)$
$0.429-0.500$	0.4 ± 0.3	1.3 ± 0.4	0.01 ± 0.06	-0.07 ± 0.08	2.5 ± 2.4	unconstrained	$1672(1607)$
$0.500-0.571$	3.6 ± 0.2	4.1 ± 0.3	0.82 ± 0.05	0.91 ± 0.06	15.1 ± 1.9	52.5 ± 3.6	$1821(1826)$
$0.571-0.643$	3.6 ± 0.2	3.7 ± 0.3	0.97 ± 0.05	1.13 ± 0.06	13.9 ± 1.7	33.2 ± 3.6	$1910(1871)$
$0.643-0.714$	3.8 ± 0.2	4.1 ± 0.3	1.02 ± 0.05	1.21 ± 0.06	13.5 ± 1.8	5.8 ± 3.8	$1957(1848)$
$0.714-0.786$	3.6 ± 0.2	3.6 ± 0.3	0.98 ± 0.05	1.10 ± 0.06	8.8 ± 1.8	-8.4 ± 6.1	$1935(1841)$
$0.786-0.857$	3.0 ± 0.2	4.0 ± 0.3	0.93 ± 0.06	1.22 ± 0.07	12.8 ± 2.0	-29.7 ± 4.5	$1714(1753)$
$0.857-0.929$	2.6 ± 0.3	3.1 ± 0.3	1.05 ± 0.07	1.05 ± 0.08	8.5 ± 2.4	-35.7 ± 8.1	$1522(1533)$
$0.929-1.000$	1.8 ± 0.3	1.3 ± 0.4	1.14 ± 0.09	0.95 ± 0.11	$1.2+2.1$	unconstrained	$1309(1206)$

the X-ray radiation emitted at the magnetic poles is suppressed along the normal to the stellar surface (because hotter upper layers contribute more to the flux leaving the atmosphere at a larger angle to the normal), while the PD tends to increase with the angle between the normal and direction of the photon leaving the atmosphere due to a stronger dependence of cross sections on X-ray polarization at the larger angles (Mushtukov et al. 2021; Sokolova-Lapa et al. 2021). When the mass accretion rate is close to the critical one, like in the case of Cen X-3, the beam pattern can be already affected by the scattering of X-ray photons by the accretion flow above the NS magnetic poles, leading to the apparent anti-correlation of the PD and pulsed flux (see Discussion section in Tsygankov et al. 2022).

4.2. Geometry of the system

To determine the pulsar's geometrical parameters, we followed the procedures described in Doroshenko et al. (2022) and Tsygankov et al.(2022). Namely, we fitted the spin-phase variations of PA of GRO J1008-57 with the rotating-vector model (RVM; Radhakrishnan \& Cooke 1969, Poutanen 2020). The applicability of this model, that assumes the dipole configuration of the NS magnetic field, for XRPs, where the magnetic field near the star can be more complicated, was already discussed in several papers (e.g. González-Caniulef et al. 2023; Taverna et al. 2022). Specifically, it is related to the birefringence properties of vacuum (Gnedin et al. 1978) causing the radiation propagation in two normal modes until the polarization-limiting radius (Budden 1952; Heyl \& Shaviv 2002, Heyl \& Caiazzo 2018). For a typical XRP this radius is about twenty stellar radii (300 km), which is much larger than the star and therefore we expect the field configuration to be there dipolar.

If radiation escapes in the O-mode, the PA can be described by the RVM following expression (Poutanen 2020)
$\tan \left(\mathrm{PA}-\chi_{\mathrm{p}}\right)=\frac{-\sin \theta \sin \left(\phi-\phi_{0}\right)}{\sin i_{\mathrm{p}} \cos \theta-\cos i_{\mathrm{p}} \sin \theta \cos \left(\phi-\phi_{0}\right)}$.
Here i_{p} is the pulsar inclination (i.e. the angle between the pulsar spin vector and the line-of-sight), χ_{p} is the position angle of the pulsar spin axis, θ is the magnetic obliquity (i.e. the angle between the magnetic dipole and the spin axes), ϕ is the pulse phase, and ϕ_{0} is the phase when the magnetic pole is closest to the observer.

The pulse phase dependence of the PA obtained from the spectro-polarimetric analysis of the combined data was fitted with the RVM using the affine invariant Markov chain Monte Carlo ensemble sampler emcee package of python (ForemanMackey et al. 2013). All the parameters in eq. (1) were left free. As a result, we obtained accurate estimates of the pulsar inclination, $i_{\mathrm{p}}=130.2 \pm 3.3$, the co-latitude of the magnetic pole, $\theta=73.5 \pm 19$, and the position angle of the pulsar spin, $\chi_{\mathrm{p}}=\chi_{\mathrm{p}, \mathrm{O}}=74: 8 \pm 4.2$ (see Figures 4 and 7). The pulsar spinaxis position angle, however, is not determined uniquely and can be directed oppositely at $\chi_{\mathrm{p}}=\chi_{\mathrm{p}, \mathrm{O}}+180^{\circ}=254.8 \pm 4.2$ because only the orientation of the polarization plane can be measured. Also, if radiation escapes in the X-mode, then the pulsar spin is oriented at $\chi_{\mathrm{p}}=\chi_{\mathrm{p}, \mathrm{X}}=\chi_{\mathrm{p}, \mathrm{O}} \pm 90^{\circ}$. The obtained geometrical parameters were verified using the RVM fit to the unbinned Stokes parameters on a photon-by-photon basis as outlined in González-Caniulef et al. (2023) and Marshall (2021). The PD and PA obtained in this way turned out to be nearly identical to those shown in Figure 4

Furthermore, the inclination of the pulsar estimated from IXPE data ($i_{\mathrm{p}} \simeq 130^{\circ}$) appears to be close to the orbital inclination of $\sim 144^{\circ}$ estimated by Coe et al. (2007) based on the analysis of $\mathrm{H} \alpha$ emission line profile from circumbinary Be disk ${ }^{3}$ Although the accuracy of the latter estimate might be debated, it indicates that the accretion torques had sufficient time to align the spin and orbital axes. Very rough estimates result in an alignment timescales of the order of $\lesssim 10^{5}$ year for a NS with a strong magnetic field (see eq. 16 in Biryukov \& Abolmasov 2021).

It is interesting to note that the resulting determination of the co-latitude of the magnetic pole points to a very high value of $\theta \approx 75^{\circ}$, which tells us that GRO J1008-57 is an almost orthogonal rotator. This fact strongly contrasts with the results obtained earlier for Cen X-3 and Her X-1, where the magnetic obliquity was much lower, at about 16° (Doroshenko et al. 2022; Tsygankov et al. 2022). Observations of other XRPs with IXPE, that is, Vela X-1 (Forsblom et al., subm.) and X Persei (Mushtukov et al., in prep.), also imply either low or high values of magnetic obliquity. These results are in fact in line with the results of some studies predicting a bimodal distribution of the magnetic obliquity θ peaking around 0 and 90 deg in the case of isolated NSs (e.g., Lander \& Jones 2018). We note, however, that in the case

[^3]

Fig. 7. Corner plot of the posterior distribution for the RVM parameters for the pulsar geometry obtained using the PA values from the phaseresolved spectro-polarimetric analysis of the combined data. The two-dimensional contours correspond to $68.27 \%, 95.45 \%$ and 99.73% confidence levels. The histograms show the normalized one-dimensional distribution for each parameter derived from the posterior samples. The mean value and 1σ confidence interval for the derived parameters are presented above the corresponding histogram (dashed lines).
of accreting NSs the predictions are less specific depending on the accretion mechanism (Biryukov \& Abolmasov 2021). More observations of XRPs with IXPE will allow us in the future to verify models of accreting pulsars' axis alignment.

5. Summary

The results of our study can be summarized as follows:

1. GRO J1008-57 was observed by IXPE during the Type I outburst in November 2022 in two states, with the flux different by a factor of 2 .
2. Both the energy-binned and the spectro-polarimetric analyses of the phase-averaged data revealed a significant average polarization of the source with the PD of $\sim 3.9 \%$ regardless of the source flux.
3. The pulse-phase resolved analysis revealed a correlation between the flux and the PD, as well as a strong variation of the PA responsible for low average polarization from the source. The results obtained in the two luminosity states are consistent within the uncertainties.
4. The observed variations of the PA are well described in the framework of the rotating-vector model. The corresponding inclination of the pulsar is about 130°, the position angle of the pulsar spin is $\sim 75^{\circ}$ (or 255°), if radiation escapes from the surface in the O-mode, or $\sim 165^{\circ}$ (or -15°) if the X-mode dominates. In all cases, the magnetic obliquity was found to be very large $\sim 75^{\circ}$, implying that GRO J1008-57 is a nearly orthogonal rotator.
5. The observed pulsar inclination appears to agree with the estimated orbital inclination of the system, suggesting that the pulsar spin is close to be aligned with the orbital axis. It indicates that, in spite of a strong natal kick received by the NS, the accretion torques (even though acting sporadically) had sufficient time to align the spin and orbital angular momenta.
6. The relatively low polarization detected from GRO J1008-57 as well as the independence of the polarization properties on the mass accretion rate can be explained in the framework of the model of an overheated NS atmosphere.

Acknowledgements. The Imaging X-ray Polarimetry Explorer (IXPE) is a joint US and Italian mission. The US contribution is supported by the National Aeronautics and Space Administration (NASA) and led and managed by its Marshall Space Flight Center (MSFC), with industry partner Ball Aerospace (contract NNM15AA18C). The Italian contribution is supported by the Italian Space Agency (Agenzia Spaziale Italiana, ASI) through contract ASI-OHBI-2017-12-I.0, agreements ASI-INAF-2017-12-H0 and ASI-INFN-2017.13-H0, and its Space Science Data Center (SSDC) with agreements ASI-INAF-2022-14HH. 0 and ASI-INFN 2021-43-HH.0, and by the Istituto Nazionale di Astrofisica (INAF) and the Istituto Nazionale di Fisica Nucleare (INFN) in Italy. This research used data products provided by the IXPE Team (MSFC, SSDC, INAF, and INFN) and distributed with additional software tools by the High-Energy Astrophysics Science Archive Research Center (HEASARC), at NASA Goddard Space Flight Center (GSFC). We acknowledge support from the Academy of Finland grants $333112,349144,349373$, and 349906 (SST, JP), the German Academic Exchange Service (DAAD) travel grant 57525212 (VD, VFS), the Väisälä Foundation (SST), the German Research Foundation (DFG) grant WE 1312/53-1 (VFS), UKRI Stephen Hawking fellowship and the Netherlands Organization for Scientific Research Veni fellowship (AAM), the Czech Science Foundation project 21-06825X (JS).

References

Arnaud, K. A. 1996, in ASP Conf. Ser., Vol. 101, Astronomical Data Analysis Software and Systems V, ed. G. H. Jacoby \& J. Barnes (San Francisco: Astron. Soc. Pac.), 17-20
Baldini, L., Barbanera, M., Bellazzini, R., et al. 2021, Astroparticle Physics, 133, 102628
Baldini, L., Bucciantini, N., Di Lalla, N., et al. 2022, SoftwareX, 19, 101194
Basko, M. M. \& Sunyaev, R. A. 1976, MNRAS, 175, 395
Bellm, E. C., Fürst, F., Pottschmidt, K., et al. 2014, ApJ, 792, 108
Biryukov, A. \& Abolmasov, P. 2021, MNRAS, 505, 1775
Budden, K. G. 1952, Proceedings of the Royal Society of London Series A, 215, 215
Caiazzo, I. \& Heyl, J. 2021, MNRAS, 501, 109
Coe, M. J., Bird, A. J., Hill, A. B., et al. 2007, MNRAS, 378, 1427
Deeter, J. E., Boynton, P. E., \& Pravdo, S. H. 1981, ApJ, 247, 1003
Di Marco, A., Soffitta, P., Costa, E., et al. 2023, arXiv e-prints, arXiv:2302.02927
Doroshenko, V., Poutanen, J., Tsygankov, S. S., et al. 2022, Nature Astronomy, 6, 1433
Foreman-Mackey, D., Hogg, D. W., Lang, D., \& Goodman, J. 2013, PASP, 125, 306
Fortin, F., García, F., Chaty, S., Chassande-Mottin, E., \& Simaz Bunzel, A. 2022, A\&A, 665, A31
Ge, M. Y., Ji, L., Zhang, S. N., et al. 2020, ApJ, 899, L19
Gnedin, Y. N. \& Pavlov, G. G. 1974, Soviet Journal of Experimental and Theoretical Physics, 38, 903
Gnedin, Y. N., Pavlov, G. G., \& Shibanov, I. A. 1978, Pisma v Astronomicheskii Zhurnal, 4, 214
González-Caniulef, D., Caiazzo, I., \& Heyl, J. 2023, MNRAS, 519, 5902-5912
González-Caniulef, D., Zane, S., Turolla, R., \& Wu, K. 2019, MNRAS, 483, 599
Harding, A. K. \& Lai, D. 2006, Reports on Progress in Physics, 69, 2631
Heyl, J. \& Caiazzo, I. 2018, Galaxies, 6, 76
Heyl, J. S. \& Shaviv, N. J. 2002, Phys. Rev. D, 66, 023002
Kislat, F., Clark, B., Beilicke, M., \& Krawczynski, H. 2015, Astroparticle Physics, 68, 45
Kühnel, M., Müller, S., Kreykenbohm, I., et al. 2013, A\&A, 555, A95
Lander, S. K. \& Jones, D. I. 2018, MNRAS, 481, 4169
Lutovinov, A., Tsygankov, S., Molkov, S., et al. 2021, ApJ, 912, 17
Marshall, H. L. 2021, AJ, 162, 134
Marshall, H. L., Ng, M., Rogantini, D., et al. 2022, ApJ, 940, 70
Matsuoka, M., Kawasaki, K., Ueno, S., et al. 2009, PASJ, 61, 999
Meszaros, P., Novick, R., Szentgyorgyi, A., Chanan, G. A., \& Weisskopf, M. C. 1988, ApJ, 324, 1056
Mushtukov, A. \& Tsygankov, S. 2022, arXiv e-prints, arXiv:2204.14185
Mushtukov, A. A., Suleimanov, V. F., Tsygankov, S. S., \& Portegies Zwart, S. 2021, MNRAS, 503, 5193
Mushtukov, A. A., Suleimanov, V. F., Tsygankov, S. S., \& Poutanen, J. 2015, MNRAS, 447, 1847
Naik, S., Paul, B., Kachhara, C., \& Vadawale, S. V. 2011, MNRAS, 413, 241
Nelson, R. W., Wang, J. C. L., Salpeter, E. E., \& Wasserman, I. 1995, ApJ, 438, L99
Pavlov, G. G. \& Gnedin, Y. N. 1984, Astrophys. Space Phys. Res., 3, 197
Poutanen, J. 2020, A\&A, 641, A166
Radhakrishnan, V. \& Cooke, D. J. 1969, Astrophys. Lett., 3, 225
Reig, P. 2011, Ap\&SS, 332, 1
Shrader, C. R., Sutaria, F. K., Singh, K. P., \& Macomb, D. J. 1999, ApJ, 512, 920
Soffitta, P., Baldini, L., Bellazzini, R., et al. 2021, AJ, 162, 208
Sokolova-Lapa, E., Gornostaev, M., Wilms, J., et al. 2021, A\&A, 651, A12
Stollberg, M. T., Finger, M. H., Wilson, R. B., et al. 1993, IAU Circ., 5836, 1
Strohmayer, T. E. 2017, ApJ, 838, 72
Suleimanov, V. F., Poutanen, J., \& Werner, K. 2018, A\&A, 619, A114
Taverna, R., Turolla, R., Muleri, F., et al. 2022, Science, 378, 646
Tsygankov, S. S., Doroshenko, V., Mushtukov, A. A., et al. 2019a, MNRAS, 487, L30
Tsygankov, S. S., Doroshenko, V., Poutanen, J., et al. 2022, ApJ, 941, L14
Tsygankov, S. S., Mushtukov, A. A., Suleimanov, V. F., et al. 2017a, A\&A, 608, A17
Tsygankov, S. S., Rouco Escorial, A., Suleimanov, V. F., et al. 2019b, MNRAS, 483, L144
Tsygankov, S. S., Wijnands, R., Lutovinov, A. A., Degenaar, N., \& Poutanen, J. 2017b, MNRAS, 470, 126
Weisskopf, M. C., Soffitta, P., Baldini, L., et al. 2022, J. Astron. Telesc. Instrum. Syst., 8, 026002
Wilms, J., Allen, A., \& McCray, R. 2000, ApJ, 542, 914
Yamamoto, T., Mihara, T., Sugizaki, M., et al. 2013, The Astronomer's Telegram, 4759, 1
Zel'dovich, Y. B. \& Shakura, N. I. 1969, Soviet Ast., 13, 175
Article number, page 10 of 11
${ }^{1}$ Department of Physics and Astronomy, FI-20014 University of Turku, Finland
e-mail: sergey.tsygankov@utu.fi
${ }^{2}$ Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, D-72076 Tübingen, Germany
${ }^{3}$ Astrophysics, Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK
${ }^{4}$ INAF Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma, Italy
5 University of British Columbia, Vancouver, BC V6T 1Z4, Canada
${ }^{6}$ International Space Science Institute, Hallerstrasse 6, 3012 Bern, Switzerland
7 MIT Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
8 Astronomical Institute of the Czech Academy of Sciences, Boční II 1401/1, 14100 Praha 4, Czech Republic
9 Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Via Marzolo 8, 35131 Padova, Italy
10 Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, via della Vasca Navale 84, 00146 Roma, Italy
11 Instituto de Astrofísicade Andalucía - CSIC, Glorieta de la Astronomía s/n, 18008 Granada, Spain
12 INAF Osservatorio Astronomico di Roma, Via Frascati 33, 00040 Monte Porzio Catone (RM), Italy
${ }^{13}$ Space Science Data Center, Agenzia Spaziale Italiana, Via del Politecnico snc, 00133 Roma, Italy
14 INAF Osservatorio Astronomico di Cagliari, Via della Scienza 5, 09047 Selargius (CA), Italy
15 Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy
${ }^{16}$ Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy
17 NASA Marshall Space Flight Center, Huntsville, AL 35812, USA
18 Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
19 Dipartimento di Fisica, Università degli Studi di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
${ }^{20}$ INAF Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, 50125 Firenze, Italy
21 Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Via Sansone 1, 50019 Sesto Fiorentino (FI), Italy
22 Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, Via Sansone 1, 50019 Sesto Fiorentino (FI), Italy
23 Agenzia Spaziale Italiana, Via del Politecnico snc, 00133 Roma, Italy
24 Science and Technology Institute, Universities Space Research Association, Huntsville, AL 35805, USA
25 Istituto Nazionale di Fisica Nucleare, Sezione di Roma "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Roma, Italy
26 Department of Physics and Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, California 94305, USA
27 RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
${ }^{28}$ California Institute of Technology, Pasadena, CA 91125, USA
29 Yamagata University,1-4-12 Kojirakawa-machi, Yamagata-shi 9908560, Japan
${ }^{30}$ Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
31 International Center for Hadron Astrophysics, Chiba University, Chiba 263-8522, Japan
32 Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215, USA
${ }^{33}$ Department of Astrophysics, St. Petersburg State University, Universitetsky pr. 28, Petrodvoretz, 198504 St. Petersburg, Russia
34 Department of Physics and Astronomy and Space Science Center, University of New Hampshire, Durham, NH 03824, USA
35 Physics Department and McDonnell Center for the Space Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
${ }^{36}$ Finnish Centre for Astronomy with ESO, 20014 University of Turku, Finland
37 Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Strada Comunale Cinthia, 80126 Napoli, Italy
38 Université de Strasbourg, CNRS, Observatoire Astronomique de Strasbourg, UMR 7550, 67000 Strasbourg, France
${ }^{39}$ Graduate School of Science, Division of Particle and Astrophysical Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
40 Hiroshima Astrophysical Science Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan

41 University of Maryland, Baltimore County, Baltimore, MD 21250, USA
${ }^{42}$ NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
${ }^{43}$ Center for Research and Exploration in Space Science and Technology, NASA/GSFC, Greenbelt, MD 20771, USA
44 Department of Physics, University of Hong Kong, Pokfulam, Hong Kong
45 Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16801, USA
46 Université Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France
${ }^{47}$ Center for Astrophysics, Harvard \& Smithsonian, 60 Garden St, Cambridge, MA 02138, USA
48 INAF Osservatorio Astronomico di Brera, via E. Bianchi 46, 23807 Merate (LC), Italy
49 Dipartimento di Fisica, Università degli Studi di Roma "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Roma, Italy
50 Department of Astronomy, University of Maryland, College Park, Maryland 20742, USA
${ }^{51}$ Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT, UK
52 Anton Pannekoek Institute for Astronomy \& GRAPPA, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
${ }^{53}$ Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China

[^0]: * Deceased

[^1]: ${ }^{1}$ https://github.com/lucabaldini/ixpeobssim

[^2]: 2 http://maxi.riken.jp/star_data/J1009-582/J1009-582. html

[^3]: ${ }^{3}$ The actual value of inclination reported by Coe et al. (2007) is $\sim 36^{\circ}$ which, however, cannot be distinguished from $180^{\circ}-36^{\circ}=144^{\circ}$.

